Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation

نویسندگان

  • Marcus J. Grote
  • Dominik Schötzau
چکیده

In [20] a symmetric interior penalty discontinuous Galerkin (DG) method was presented for the time-dependent wave equation. In particular, optimal a-priori error bounds in the energy norm and the L-norm were derived for the semi-discrete formulation. Here the error analysis is extended to the fully discrete numerical scheme, when a centered second-order finite difference approximation (“leapfrog” scheme) is used for the time discretization. For sufficiently smooth solutions, the maximal error in the L-norm error over a finite time interval converges optimally as O(h + ∆t), where p denotes the polynomial degree, h the mesh size, and ∆t the time step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal L Error Estimates for the Interior Penalty DGMethod forMaxwell’s Equations in Cold Plasma

In this paper, we consider an interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell’s equations in cold plasma. In Huang and Li (J. Sci. Comput., 42 (2009), 321–340), for both semi and fully discrete DG schemes, we proved error estimates which are optimal in the energy norm, but sub-optimal in the L2-norm. Here by filling this gap, we show that these schemes are opt...

متن کامل

Analysis of Mixed Interior Penalty Discontinuous Galerkin Methods for the Cahn-Hilliard Equation and the Hele-Shaw Flow

This paper proposes and analyzes two fully discrete mixed interior penalty discontinuous Galerkin (DG) methods for the fourth order nonlinear Cahn-Hilliard equation. Both methods use the backward Euler method for time discretization and interior penalty discontinuous Galerkin methods for spatial discretization. They differ from each other on how the nonlinear term is treated, one of them is bas...

متن کامل

hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number

This paper develops some interior penalty hp-discontinuous Galerkin (hp-DG) methods for the Helmholtz equation in two and three dimensions. The proposed hp-DG methods are defined using a sesquilinear form which is not only mesh-dependent but also degree-dependent. In addition, the sesquilinear form contains penalty terms which not only penalize the jumps of the function values across the elemen...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Analysis of Symmetric Interior Penalty Discontinuous Galerkin Methods for the Allen-cahn Equation and the Mean Curvature Flow

This paper develops and analyzes two fully discrete interior penalty discontinuous Galerkin (IP-DG) methods for the Allen-Cahn equation, which is a nonlinear singular perturbation of the heat equation and originally arises from phase transition of binary alloys in materials science, and its sharp interface limit (the mean curvature flow) as the perturbation parameter tends to zero. Both fully i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2009